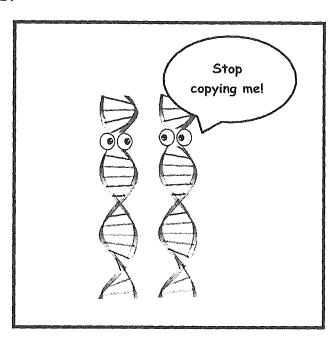
40S Biology Introduction

Lesson 1 Biology - The Science of Life


Lesson 2 Building Blocks of Life

Lesson 3 Continuity of Life

Lesson 4 Genetics

Lesson 5 Evolution

Lesson 6 Ecology

Welcome to biology!

Before starting the grade 12 biology course, take some time to review some of the fundamentals of biology. Your understanding of these topics will be necessary for your success in this course.

Once you are comfortable with the material presented, you will complete a short assessment. This will provide you with opportunity to discuss these topics with your instructor.

Lesson 1 Biology - The Science of Life

INTRODUCTION

Scientists believe that the first forms of life on Earth were microorganisms that existed for billions of years in the ocean before plants and animals appeared. The mammals, birds, and flowers so familiar to us are all relatively recent, originating 130 to 250 million years ago. The earliest representatives of the genus *Homo*, to which we belong, have inhabited this planet for only the last 2.5 million years, and only in the last 300,000 years have humans started looking like we do today.

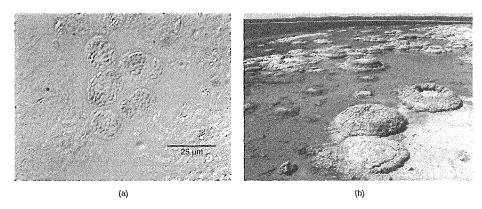


Figure 1.2 Formerly called blue-green algae, these (a) cyanobacteria, magnified 300x under a light microscope, are some of Earth's oldest life forms. These (b) stromatolites along the shores of Lake Thetis in Western Australia are ancient structures formed by layering cyanobacteria in shallow waters. (credit a: modification of work by NASA; credit b: modification of work by Ruth Ellison; scale-bar data from Matt Russell)

What is biology? In simple terms, **biology** is the study of life. This is a very broad definition because the scope of biology is vast. Biologists may study anything from the microscopic or submicroscopic view of a cell to ecosystems and the whole living planet. Listening to the daily news, you will quickly realize how many aspects of biology we discuss every day. For example, recent news topics include *Escherichia coli* outbreaks in spinach and *Salmonella* contamination in peanut butter. Other subjects include efforts toward finding a cure for AIDS, Alzheimer's disease, and cancer. On a global scale, many researchers are committed to finding ways to protect the planet, solve environmental issues, and reduce the effects of climate change. All of these diverse endeavors are related to different facets of the discipline of biology.

Not surprisingly, the natural science of biology has many branches or subdisciplines. Cell biologists study cell structure and function, while biologists who study anatomy investigate the structure of an entire organism. Those biologists studying physiology, however, focus on the internal functioning of an organism. Some areas of biology focus on only particular types of living things. For example, botanists explore plants, while zoologists specialize in animals.

The Process of Science

Biology is a science, but what exactly is science? What does the study of biology share with other scientific disciplines? We can define **science** (from the Latin *scientia*, meaning "knowledge") as knowledge that covers general truths or the operation of general laws, especially when acquired and tested by the scientific method. It becomes clear from this definition that applying scientific method plays a major role in science. The **scientific method** is a method of research with defined steps that include experiments and careful observation.

One of the most important aspects of this method is the testing of hypotheses by means of repeatable experiments. A **hypothesis** is a suggested explanation for an event, which one can test. Although using the scientific method is inherent to science, it is inadequate in determining what science is. This is because it is relatively easy to apply the scientific method to disciplines such as physics and chemistry, but when it comes to disciplines like archaeology, psychology, and geology, the scientific method becomes less applicable as repeating experiments becomes more difficult.

These areas of study are still sciences, however. Consider archaeology—even though one cannot perform repeatable experiments, hypotheses may still be supported. For instance, an archaeologist can hypothesize that an ancient culture existed based on finding a piece of pottery. He or she could make further hypotheses about various characteristics of this culture, which could be correct or false through continued support or contradictions from other findings. A hypothesis may become a verified theory. A **theory** is a tested and confirmed explanation for observations or phenomena. Therefore, we may be better off to define science as fields of study that attempt to comprehend the nature of the universe.

The Scientific Method

Biologists study the living world by posing questions about it and seeking science-based responses. Known as scientific method, this approach is common to other sciences as well. The scientific method was used even in ancient times, but England's Sir Francis Bacon (1561–1626) first documented it. He set up inductive methods for scientific inquiry. The scientific method is not used only by biologists; researchers from almost all fields of study can apply it as a logical, rational problem-solving method. The scientific process typically starts with an observation (often a problem to solve) that leads to a question. For example, what is causing this observation?

A scientist will develop a hypothesis, a suggested explanation that can be tested. To solve a problem, one can propose several hypotheses that can be tested. Once a hypothesis has been selected, a prediction is made. A prediction is similar to a hypothesis but it typically has the format "If . . . then"

A valid hypothesis must be testable. It should also be **falsifiable**, meaning that experimental results can disprove it. Importantly, science does not claim to "prove" anything because scientific understandings are always subject to modification with further information. This step—openness to disproving ideas—is what distinguishes sciences from non-sciences. The presence of the supernatural, for instance, is neither testable nor falsifiable. To test a hypothesis, a researcher will conduct one or more experiments designed to eliminate one or more of the hypotheses. Be aware that rejecting one hypothesis does not determine whether or not one can accept the other hypotheses. It simply eliminates one hypothesis that is not valid.

In hypothesis-based science, researchers predict specific results from a general premise. We call this type of reasoning deductive reasoning: deduction proceeds from the general to the particular. However, the reverse of the process is also possible: sometimes, scientists reach a general conclusion from a number of specific observations. We call this type of reasoning inductive reasoning, and it proceeds from the particular to the general. Researchers often use inductive and deductive reasoning in tandem to advance scientific knowledge.

The scientific method may seem too rigid and structured. It is important to keep in mind that, although scientists often follow this sequence, there is flexibility. Sometimes an experiment leads to conclusions that favor a change in approach. Often, an experiment brings entirely new scientific questions to the puzzle. Many times, science does not operate in a linear fashion. Instead, scientists continually draw inferences and make generalizations, finding patterns as their research proceeds. Scientific reasoning is more complex than the scientific method alone suggests. Notice, too, that we can apply the scientific method to solving problems that aren't necessarily scientific in nature.

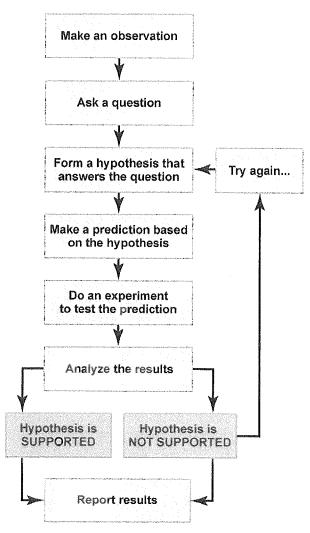


Figure 1.6 The scientific method consists of a series of well-defined steps. If a hypothesis is not supported by experimental data, one can propose a new hypothesis.

The Properties of Life

All living organisms share several key characteristics or functions: order, sensitivity or response to the environment, reproduction, adaptation, growth and development, regulation/homeostasis, energy processing, and evolution. When viewed together, these eight characteristics serve to define life.

Order

Organisms are highly organized, coordinated structures that consist of one or more cells. Even very simple, single-celled organisms are remarkably complex: inside each cell, atoms comprise molecules. These in turn comprise cell organelles and other cellular inclusions. In multicellular organisms, similar cells form tissues. Tissues, in turn, collaborate to create organs (body structures with a distinct function). Organs work together to form organ systems.

Sensitivity or Response to Stimuli

Figure 1.11 The leaves of this sensitive plant (*Mimosa pudica*) will instantly droop and fold when touched. After a few minutes, the plant returns to normal. (credit: Alex Lomas)

Organisms respond to diverse stimuli. For example, plants can bend toward a source of light, climb on fences and walls, or respond to touch (<u>Figure 1.11</u>). Even tiny bacteria can move toward or away from chemicals (a process called *chemotaxis*) or light (*phototaxis*). Movement toward a stimulus is a positive response, while movement away from a stimulus is a negative response.

Reproduction

Single-celled organisms reproduce by first duplicating their DNA, and then dividing it equally as the cell prepares to divide to form two new cells. Multicellular organisms often produce specialized reproductive germline, gamete, oocyte, and sperm cells. After fertilization (the fusion of an oocyte and a sperm cell), a new individual develops. When reproduction occurs, DNA containing genes are passed along to an organism's offspring. These genes ensure that the offspring will belong to the same species and will have similar characteristics, such as size and shape.

Adaptation

All living organisms exhibit a "fit" to their environment. Biologists refer to this fit as adaptation, and it is a consequence of evolution by natural selection, which operates in every lineage of reproducing organisms. Examples of adaptations are diverse and unique, from heat-resistant Archaea that live in boiling hotsprings to the tongue length of a nectar-feeding moth that matches the size of the flower from which it feeds. All adaptations enhance the reproductive potential of the individuals exhibiting them, including their ability to survive to reproduce. Adaptations are not constant. As an environment changes, natural selection causes the characteristics of the individuals in a population to track those changes.

Growth and Development

Organisms grow and develop as a result of genes providing specific instructions that will direct cellular growth and development. This ensures that a species' young will grow up to exhibit many of the same characteristics as its parents.

Regulation/Homeostasis

Even the smallest organisms are complex and require multiple regulatory mechanisms to coordinate internal functions, respond to stimuli, and cope with environmental stresses. Two examples of internal functions regulated in an organism are nutrient transport and blood flow. Organs (groups of tissues working together) perform specific functions, such as carrying oxygen throughout the body, removing wastes, delivering nutrients to every cell, and cooling the body.

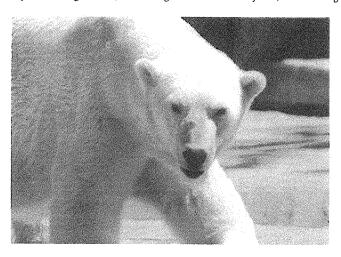


Figure 1.13 Polar bears (*Ursus maritimus*) and other mammals living in ice-covered regions maintain their body temperature by generating heat and reducing heat loss through thick fur and a dense layer of fat under their skin. (credit: "longhorndave"/Flickr)

In order to function properly, cells require appropriate conditions such as proper temperature, pH, and appropriate concentration of diverse chemicals. These conditions may, however, change from one moment to the next. Organisms are able to maintain internal conditions within a narrow range almost constantly, despite environmental changes, through homeostasis (literally, "steady state"). For example, an organism needs to regulate body temperature through the thermoregulation process. Organisms that live in cold climates, such as the polar bear (Figure 1.13), have body structures that help them withstand low temperatures and conserve body heat. Structures that aid in this type of insulation include fur, feathers, blubber, and fat. In hot climates, organisms have methods (such as perspiration in humans or panting in dogs) that help them to shed excess body heat.

Energy Processing

All organisms use a source of energy for their metabolic activities. Some organisms capture energy from the sun and convert it into chemical energy in food. Others use chemical energy in molecules they take in as food.

Evolution

The diversity of life on Earth is a result of mutations, or random changes in hereditary material over time. These mutations allow the possibility for organisms to adapt to a changing environment. An organism that evolves characteristics fit for the environment will have greater reproductive success, subject to the forces of natural selection.

Levels of Organization of Living Things

Living things are highly organized and structured, following a hierarchy that we can examine on a scale from small to large. The **atom** is the smallest and most fundamental unit of matter. It consists of a nucleus surrounded by electrons. Atoms form molecules. A **molecule** is a chemical structure consisting of at least two atoms held together by one or more chemical bonds. Many molecules that are biologically important are **macromolecules**, large molecules that are typically formed by polymerization (a polymer is a large molecule that is made by combining smaller units called monomers, which are simpler than macromolecules). An example of a macromolecule is deoxyribonucleic acid (DNA) (Figure 1.15), which contains the instructions for the structure and functioning of all living organisms.

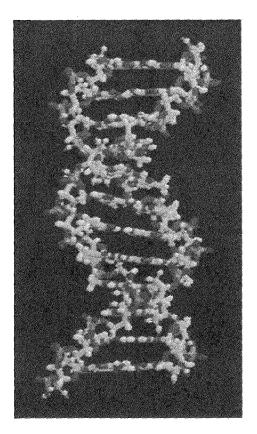


Figure 1.15 All molecules, including this DNA molecule, are comprised of atoms. (credit: "brian0918"/Wikimedia Commons)

Some cells contain aggregates of macromolecules surrounded by membranes. We call these **organelles**. Organelles are small structures that exist within cells. Examples of organelles include mitochondria and chloroplasts, which carry out indispensable functions: mitochondria produce energy to power the cell, while chloroplasts enable green plants to utilize the energy in sunlight to make sugars. All living things are made of cells. The **cell** itself is the smallest fundamental unit of structure and function in living organisms. (This requirement is why scientists do not consider viruses living: they are not made of cells. To make new viruses, they have to invade and hijack the reproductive mechanism of a living cell. Only then can they obtain the materials they need to reproduce.) Some organisms consist of a single cell and others are multicellular. Scientists classify cells as prokaryotic or eukaryotic. **Prokaryotes** are single-celled or colonial organisms that do not have membrane-bound nuclei. In contrast, the cells of **eukaryotes** do have membrane-bound organelles and a membrane-bound nucleus.

In larger organisms, cells combine to make **tissues**, which are groups of similar cells carrying out similar or related functions. **Organs** are collections of tissues grouped together performing a common function. Organs are present not only in animals but also in plants. An **organ system** is a higher level of organization that consists of functionally related organs. Mammals have many organ systems. For instance, the circulatory system transports blood through the body and to and from the lungs. It includes organs such as the heart and blood vessels. **Organisms** are individual living entities. For example, each tree in a forest is an organism. Single-celled prokaryotes and single-celled eukaryotes are also organisms, which biologists typically call microorganisms.

Biologists collectively call all the individuals of a species living within a specific area a **population**. For example, a forest may include many pine trees, which represent the population of pine trees in this forest. Different populations may live in the same specific area. For example, the forest with the pine trees includes populations of flowering plants, insects, and microbial populations. A **community** is the sum of populations inhabiting a particular area. For instance, all of the trees, flowers, insects, and other populations in a forest form the forest's community. The forest itself is an ecosystem. An **ecosystem** consists of all the living things in a particular area together with the abiotic, nonliving parts of that environment such as nitrogen in the soil or rain water. At the highest level of organization (<u>Figure 1.16</u>), the **biosphere** is the collection of all ecosystems, and it represents the zones of life on Earth. It includes land, water, and even the atmosphere to a certain extent.

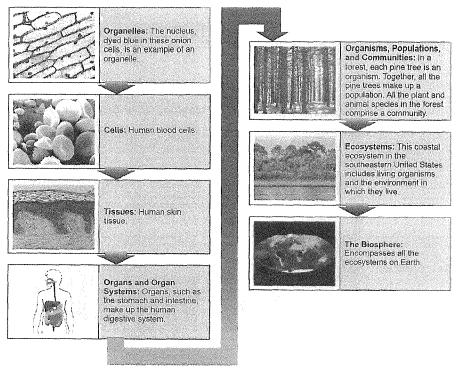


Figure 1.16 shows the biological levels of organization of living things. From a single organelle to the entire biosphere, living organisms are parts of a highly structured hierarchy. (credit "organelles": modification of work by Umberto Salvagnin; credit "cells": modification of work by Bruce Wetzel, Harry Schaefer/ National Cancer Institute; credit "tissues": modification of work by Kilbad; Fama Clamosa; Mikael Häggström; credit "organs": modification of work by Mariana Ruiz Villareal; credit "organisms": modification of work by "Crystal"/Flickr; credit "ecosystems": modification of work by US Fish and Wildlife Service Headquarters; credit "biosphere": modification of work by NASA)

The Diversity of Life

The fact that biology, as a science, has such a broad scope has to do with the tremendous diversity of life on earth. The source of this diversity is **evolution**, the process of gradual change in a population or species over time. Evolutionary biologists study the evolution of living things in everything from the microscopic world to ecosystems.

A phylogenetic tree (Figure 1.17) can summarize the evolution of various life forms on Earth. It is a diagram showing the evolutionary relationships among biological species based on similarities and differences in genetic or physical traits or both. Nodes and branches comprise a phylogenetic tree. The internal nodes represent ancestors and are points in evolution when, based on scientific evidence, researchers believe an ancestor has diverged to form two new species. The length of each branch is proportional to the time elapsed since the split.

Phylogenetic Tree of Life S = You are new Bacteria Archaea Eukarya Green Filamentous Slime Spirochetes bacteria Entampehae Animais . Fundi Gram Methanosarcina Methanobacterium Halophiles Proteobacteria Methanococcus Ciliates Cyanobacteria T. cele Planctomyce: Thermoproteu: Flageliates Pyrodictium Bacteroide: Trichomonads Cytophaga Microsporidia Thermotoga Dipiomonads

Figure 1.17 Microbiologist Carl Woese constructed this phylogenetic tree using data that he obtained from sequencing ribosomal RNA genes. The tree shows the separation of living organisms into three domains: Bacteria, Archaea, and Eukarya. Bacteria and Archaea are prokaryotes, single-celled organisms lacking intracellular organelles. (credit: Eric Gaba; NASA Astrobiology Institute.

The Phylogenetic Tree

In the past, biologists grouped living organisms into five kingdoms: animals, plants, fungi, protists, and bacteria. They based the organizational scheme mainly on physical features, as opposed to physiology, biochemistry, or molecular biology, all of which modern systematics use. American microbiologist Carl Woese's pioneering work in the early 1970s has shown, however, that life on Earth has evolved along three lineages, now called domains—Bacteria, Archaea, and Eukarya. The first two are prokaryotic cells with microbes that lack membrane-enclosed nuclei and organelles. The third domain contains the eukaryotes and includes unicellular microorganisms (protists), together with the three remaining kingdoms (fungi, plants, and animals). Woese defined Archaea as a new domain, and this resulted in a new taxonomic tree (Figure 1.17). Many organisms belonging to the Archaea domain live under extreme conditions and are called extremophiles. To construct his tree, Woese used genetic relationships rather than similarities based on morphology (shape).

Woese constructed his tree from universally distributed comparative gene sequencing that are present in every organism, and conserved (meaning that these genes have remained essentially unchanged throughout evolution). Woese's approach was revolutionary because comparing physical features are insufficient to differentiate between the prokaryotes that appear fairly similar in spite of their tremendous biochemical diversity and genetic variability (Figure 1.18). Comparing homologous DNA and RNA sequences provided Woese with a sensitive device that revealed the extensive variability of prokaryotes, and which justified separating the prokaryotes into two domains: bacteria and archaea.

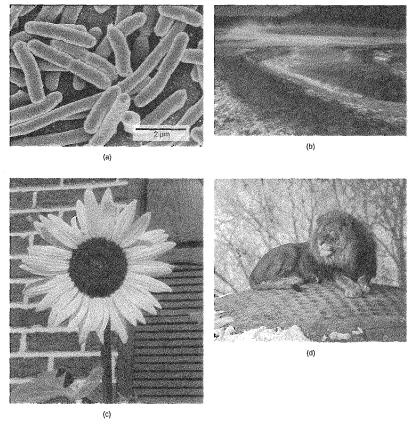


Figure 1.18 These images represent different domains. The (a) bacteria in this micrograph belong to Domain Bacteria, while the (b) extremophiles (not visible) living in this hot vent belong to Domain Archaea. Both the (c) sunflower and (d) lion are part of Domain Eukarya. (credit a: modification of work by Drew March; credit b: modification of work by Steve Jurvetson; credit c: modification of work by Michael Arrighi; credit d: modification of work by Leszek Leszcynski)

Lesson 2 Building Blocks of Life

INTRODUCTION

Elements in various combinations comprise all matter, including living things. Some of the most abundant elements in living organisms include carbon, hydrogen, nitrogen, oxygen, sulfur, and phosphorus. These form the nucleic acids, proteins, carbohydrates, and lipids that are the fundamental components of living matter. Biologists must understand these important building blocks and the unique structures of the atoms that comprise molecules, allowing for cells, tissues, organ systems, and entire organisms to form.

All biological processes follow the laws of physics and chemistry, so in order to understand how biological systems work, it is important to understand the underlying physics and chemistry. For example, the flow of blood within the circulatory system follows the laws of physics that regulate the modes of fluid flow. The breakdown of the large, complex molecules of food into smaller molecules—and the conversion of these to release energy to be stored in adenosine triphosphate (ATP)—is a series of chemical reactions that follow chemical laws. The properties of water and the formation of hydrogen bonds are key to understanding living processes. Recognizing the properties of acids and bases is important, for example, to our understanding of the digestive process. Therefore, the fundamentals of physics and chemistry are important for gaining insight into biological processes.

At its most fundamental level, life is made up of matter. **Matter** is any substance that occupies space and has mass. **Elements** are unique forms of matter with specific chemical and physical properties that cannot break down into smaller substances by ordinary chemical reactions. There are 118 elements, but only 98 occur naturally. The remaining elements are unstable and require scientists to synthesize them in laboratories.

The four elements common to all living organisms are oxygen (O), carbon (C), hydrogen (H), and nitrogen (N). In the nonliving world, elements are found in different proportions, and some elements common to living organisms are relatively rare on the earth as a whole, as Table 2.1 shows. For example, the atmosphere is rich in nitrogen and oxygen but contains little carbon and hydrogen, while the earth's crust, although it contains oxygen and a small amount of hydrogen, has little nitrogen and carbon. In spite of their differences in abundance, all elements and the chemical reactions between them obey the same chemical and physical laws regardless of whether they are a part of the living or nonliving world.

Approximate Percentage of Elements in Living Organisms (Humans) Compared to the Nonliving World

Element	Life (Humans)	Atmosphere	Earth's Crust
Oxygen (O)	65%	21%	46%
Carbon (C)	18%	trace	trace
Hydrogen (H)	10%	trace	0.1%
Nitrogen (N)	3%	78%	trace

Table 2.1

Macromolecules

As you've learned, **biological macromolecules** are large molecules, necessary for life, that are built from smaller organic molecules, meaning they contain carbon. In addition, they may contain hydrogen, oxygen, nitrogen, and additional minor elements. There are four major biological macromolecule classes (carbohydrates, lipids, proteins, and nucleic acids). Although each macromolecule is an important cell component performing a wide array of functions, our study of biology here will focus on two of these molecules; proteins and nucleic acids.

Proteins

Proteins are one of the most abundant organic molecules in living systems and have the most diverse range of functions of all macromolecules. Proteins may be structural, regulatory, contractile, or protective. They may serve in transport, storage, or membranes; or they may be toxins or enzymes. Each cell in a living system may contain thousands of proteins, each with a unique function. Their structures, like their functions, vary greatly. They are all, however, amino acid polymers arranged in a linear sequence.

Types and Functions of Proteins

Enzymes, which living cells produce, are catalysts in biochemical reactions (like digestion) and are usually complex or conjugated proteins. Each enzyme is specific for the substrate (a reactant that binds to an enzyme) upon which it acts. The enzyme may help in breakdown, rearrangement, or synthesis reactions. We call enzymes that break down their substrates catabolic enzymes. Those that build more complex molecules from their substrates are anabolic enzymes, and enzymes that affect the rate of reaction are catalytic enzymes. Note that all enzymes increase the reaction rate and, therefore, are organic catalysts. An example of an enzyme is salivary amylase, which hydrolyzes its substrate amylose, a component of starch.

Hormones are chemical-signaling molecules, usually small proteins or steroids, secreted by endocrine cells that act to control or regulate specific physiological processes, including growth, development, metabolism, and reproduction. For example, insulin is a protein hormone that helps regulate the blood glucose level. Table 3.1 lists the primary types and functions of proteins.

Protein Types and Functions

Туре	Examples	Functions
Digestive Enzymes	Amylase, lipase, pepsin, trypsin	Help in food by catabolizing nutrients into monomeric units
Transport	Hemoglobín, albumin	Carry substances in the blood or lymph throughout the body
Structural	Actin, tubulin, keratin	Construct different structures, like the cytoskeleton
Hormones	Insulin, thyroxine	Coordinate different body systems' activity
Defense	Immunoglobulins	Protect the body from foreign pathogens
Contractile	Actin, myosin	Effect muscle contraction
Storage	Legume storage proteins, egg white (albumin)	Provide nourishment in early embryo development and the seedling

Table 3.1

Proteins have different shapes and molecular weights. Some proteins are globular in shape; whereas, others are fibrous in nature. For example, hemoglobin is a globular protein, but collagen, located in our skin, is a fibrous protein. Protein shape is critical to its function, and many different types of chemical bonds maintain this shape. Changes in temperature, pH, and exposure to chemicals may lead to permanent changes in the protein's shape, leading to loss of function, or **denaturation**. Different arrangements of the same 20 types of amino acids comprise all proteins. Two rare new amino acids were discovered recently (selenocystein and pirrolysine), and additional new discoveries may be added to the list.

Amino Acids

Amino acids are the monomers that comprise proteins. Each amino acid has the same fundamental structure, which consists of a carbon atom bonded to an amino group (NH_2) , a carboxyl group (COOH), and to a hydrogen atom. Every amino acid also has another atom or group of atoms bonded to the central atom known as the R group.

Scientists use the name "amino acid" because these acids contain both amino group and carboxyl-acid-group in their basic structure. As we mentioned, there are 20 common amino acids present in proteins. Nine of these are essential amino acids in humans because the human body cannot produce them and we obtain them from our diet. For each amino acid, the R group (or side chain) is different. The chemical nature of the side chain determines the amino acid's nature for example, whether it is acidic, basic, polar, or nonpolar).

Just as some fatty acids are essential to a diet, some amino acids also are necessary. These essential amino acids in humans include isoleucine, leucine, and cysteine. Essential amino acids refer to those necessary to build proteins in the body, but not those that the body produces. Which amino acids are essential varies from organism to organism.

The sequence and the number of amino acid building blocks ultimately determine the shape, size, and function of the protein they make. Each amino acid is connected by a covalent bond called a **peptide bond**. The products that such linkages form are peptides. As more amino acids join to this growing chain, the resulting chain is a polypeptide. While the terms polypeptide and protein are sometimes used interchangeably, a polypeptide is technically a polymer of amino acids, whereas the term protein is used for a polypeptide or polypeptides that have combined together, often have bound non-peptide prosthetic groups, have a distinct shape, and have a unique function. After a protein's polypeptide chain is made, most proteins require further modification to be completely functional.

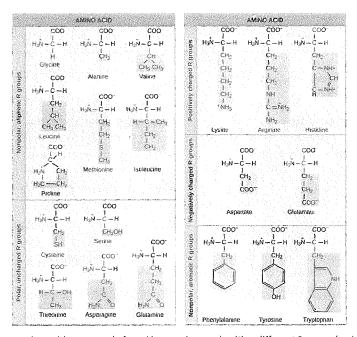


Figure 3.23 There are 20 common amino acids commonly found in proteins, each with a different R group (variant group) that determines its chemical nature.

Protein Structure

A protein's shape is critical to its function. For example, an enzyme can bind to a specific substrate at an active site. If this active site is altered because of local changes or changes in overall protein structure, the enzyme may be unable to bind to the substrate.

The unique amino acid sequence in a polypeptide chain contributes to the protein's **primary structure**. The gene encoding for a protein ultimately determines the unique sequence found in every protein. A change in the gene's sequence may lead to adding a different amino acid to the growing polypeptide chain, causing a change in protein structure and function.

The local folding of the polypeptide in some regions gives rise to the secondary structure of the protein. This is the structure that results from the folds in the polypeptide backbone.

The next level of structuring of a polypeptide, its **tertiary structure** results from the three-dimensional structure due to chemical interactions at work on the polypeptide chain. All of these interactions, weak and strong, determine the protein's final three-dimensional shape. When a protein loses its three-dimensional shape, it may no longer be functional.

In nature, some proteins form from several polypeptides, or subunits, and the interaction of these subunits forms the **quaternary structure**. Weak interactions between the subunits help to stabilize the overall structure.

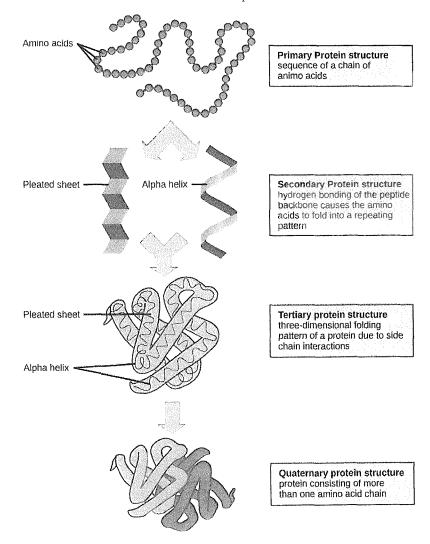


Figure 3.30 Observe the four levels of protein structure in these illustrations. (credit: modification of work by National Human Genome Research Institute)

Denaturation and Protein Folding

Each protein has its own unique sequence and shape that chemical interactions hold together. If the protein is subject to changes in temperature, pH, or exposure to chemicals, the protein structure may change, losing its shape without losing its primary sequence in what scientists call denaturation. Denaturation is often reversible because the polypeptide's primary structure is conserved in the process if the denaturing agent is removed, allowing the protein to resume its function. Sometimes denaturation is irreversible, leading to loss of function. One example of irreversible protein denaturation is frying an egg. .he albumin protein in the liquid egg white denatures when placed in a hot pan. Not all proteins denature at high temperatures. For instance, bacteria that survive in hot springs have proteins that function at temperatures close to boiling. .he stomach is also very acidic, has a low pH, and denatures proteins as part of the digestion process; however, the stomach's digestive enzymes retain their activity under these conditions.

Protein folding is critical to its function.

Nucleic Acids

Nucleic acids are the most important macromolecules for the continuity of life. They carry the cell's genetic blueprint and carry instructions for its functioning.

DNA and RNA

The two main types of nucleic acids are **deoxyribonucleic acid (DNA)** and **ribonucleic acid (RNA)**. DNA is the genetic material in all living organisms, ranging from single-celled bacteria to multicellular mammals. It is in the nucleus of eukaryotes and in the organelles, chloroplasts, and mitochondria. In prokaryotes, the DNA is not enclosed in a membranous envelope.

The cell's entire genetic content is its genome, and the study of genomes is genomics. In eukaryotic cells but not in prokaryotes, DNA forms a complex with histone proteins to form chromatin, the substance of eukaryotic chromosomes. A chromosome may contain tens of thousands of genes. Many genes contain the information to make protein products. Other genes code for RNA products. DNA controls all of the cellular activities by turning the genes "on" or "off."

The other type of nucleic acid, RNA, is mostly involved in protein synthesis. The DNA molecules never leave the nucleus but instead use an intermediary to communicate with the rest of the cell. This intermediary is the **messenger RNA (mRNA)**. Other types of RNA—like rRNA, tRNA, and microRNA—are involved in protein synthesis and its regulation.

DNA and RNA are comprised of monomers that scientists call **nucleotides**. The nucleotides combine with each other to form a **polynucleotide**, DNA or RNA. Three components comprise each nucleotide: a nitrogenous base, a pentose (five-carbon) sugar, and a phosphate group. The pentose sugar in DNA is deoxyribose, and in RNA, the sugar is ribose.

DNA Double-Helix Structure

DNA has a double-helix structure (Figure 3.32). The sugar and phosphate lie on the outside of the helix, forming the DNA's backbone. The nitrogenous bases are stacked in the interior, like a pair of staircase steps. The helix's two strands run in opposite directions, meaning that the 5' carbon end of one strand will face the 3' carbon end of its matching strand. (Scientists call this an antiparallel orientation and is important to DNA replication and in many nucleic acid interactions.)

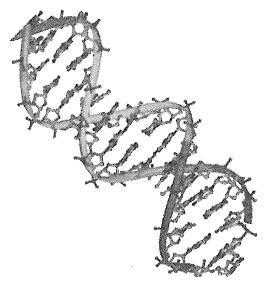


Figure 3.32 Native DNA is an antiparallel double helix. The phosphate backbone (indicated by the curvy lines) is on the outside, and the bases are on the inside. Each base from one strand interacts via hydrogen bonding with a base from the opposing strand. (credit: Jerome Walker/Dennis Myts)

You will learn about the base complementary rule, which relates to the rules that are followed for arranging base pairs in a strand of DNA. Only certain types of base pairing are allowed. This rule is the basis for which DNA is able to replicate. If you know one side of the helix, you can predicate the other strand by following this rule.

RNA

Ribonucleic acid, or RNA, is mainly involved in the process of protein synthesis under the direction of DNA. RNA is usually single-stranded and is comprised of ribonucleotides. A ribonucleotide in the RNA chain contains ribose (the pentose sugar), one of the four nitrogenous bases, and the phosphate group.

There are four major types of RNA: messenger RNA (mRNA), ribosomal RNA (rRNA), transfer RNA (tRNA), and microRNA (miRNA). The first, messenger RNA (mRNA), carries the message from DNA, which controls all of the cellular activities in a cell. If a cell requires synthesizing a certain protein, the gene for this product turns "on" and the messenger RNA synthesizes in the nucleus.

Ribosomal RNA (**rRNA**) is a major constituent of ribosomes on which the mRNA binds. The rRNA ensures the proper alignment of the mRNA and the Ribosomes. **Transfer RNA** (**tRNA**) is one of the smallest of the four types of RNA, usually 70–90 nucleotides long. It carries the correct amino acid to the protein synthesis site. It is the base pairing between the tRNA and mRNA that allows for the correct amino acid to insert itself in the polypeptide chain. **MicroRNAs** are the smallest RNA molecules and their role involves regulating gene expression by interfering with the expression of certain mRNA messages.

Table 3.2 summarizes DNA and RNA features.

DNA and RNA Features				
	DNA	RNA		
Function	Carries genetic information	Involved in protein synthesis		
Location	Remains in the nucleus	Leaves the nucleus		
Structure	Double helix	Usually single-stranded		
Sugar	Deoxyribose	Ribose		
Table 3.2				

As you will learn, information flow in an organism takes place from DNA to RNA to protein. DNA dictates the structure of mRNA, and RNA dictates the protein's structure. This is the Central Dogma of Life, which holds true for all organisms; however, exceptions to the rule occur in connection with viral infections.

Studying Cells

Your body has many kinds of cells, each specialized for a specific purpose. Just as we use a variety of materials to build a home, the human body is constructed from many cell types. For example, epithelial cells protect the body's surface and cover the organs and body cavities within. Bone cells help to support and protect the body. Immune system cells fight invading bacteria. Additionally, blood and blood cells carry nutrients and oxygen throughout the body while removing carbon dioxide. Each of these cell types plays a vital role during the body's growth, development, and day-to-day maintenance. In spite of their enormous variety, however, cells from all organisms—even ones as diverse as bacteria, onion, and human—share certain fundamental characteristics.

A cell is the smallest unit of a living thing. Whether comprised of one cell (like bacteria) or many cells (like a human), we call it an organism. Thus, cells are the basic building blocks of all organisms.

Several cells of one kind that interconnect with each other and perform a shared function form tissues. These tissues combine to form an organ (your stomach, heart, or brain), and several organs comprise an organ system (such as the digestive system, circulatory system, or nervous system). Several systems that function together form an organism (like a human being). Here, we will examine the structure and function of cells.

There are many types of cells, which scientists group into one of two broad categories: prokaryotic and eukaryotic. For example, we classify both animal and plant cells as eukaryotic cells; whereas, we classify bacterial cells as prokaryotic.

Cell Theory

Advances in lenses, microscope construction, and staining techniques enabled scientists to see some components inside cells. By the late 1830s, scientists were studying tissues and proposed the **unified cell theory**, which states that one or more cells comprise all living things, the cell is the basic unit of life, and new cells arise from existing cells.

Prokaryotic Cells

Cells fall into one of two broad categories: prokaryotic and eukaryotic. We classify only the predominantly single-celled organisms Bacteria and Archaea as prokaryotes (pro- = "before"; -kary- = "nucleus"). Animal cells, plants, fungi, and protists are all eukaryotes (eu- = "true").

Components of Prokaryotic Cells

All cells share four common components: 1) a plasma membrane, an outer covering that separates the cell's interior from its surrounding environment; 2) cytoplasm, consisting of a jelly-like cytosol within the cell in which there are other cellular components; 3) DNA, the cell's genetic material; and 4) ribosomes, which synthesize proteins. However, prokaryotes differ from eukaryotic cells in several ways.

A **prokaryote** is a simple, mostly single-celled (unicellular) organism that lacks a nucleus, or any other membrane-bound organelle. We will shortly come to see that this is significantly different in eukaryotes. Prokaryotic DNA is in the cell's central part: the **nucleoid** (Figure 4.5).

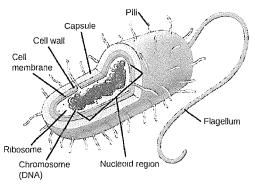
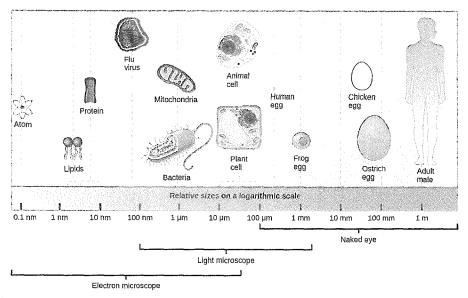


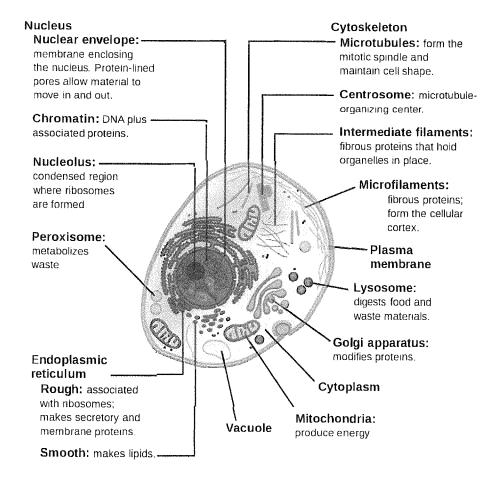
Figure 4.5 This figure shows the generalized structure of a prokaryotic cell. All prokaryotes have chromosomal DNA localized in a nucleoid, ribosomes, a cell membrane, and a cell wall. The other structures shown are present in some, but not all, bacteria.

Most prokaryotes have a cell wall and many have a capsule. The cell wall acts as an extra layer of protection, helps the cell maintain its shape, and prevents dehydration. The capsule enables the cell to attach to surfaces in its environment. Some prokaryotes have flagella, pili, or fimbriae. Flagella are used for locomotion. Pili exchange genetic material during conjugation, the process by which one bacterium transfers genetic material to another through direct contact. Bacteria use fimbriae to attach to a host cell.

Cell Size

At 0.1 to 5.0 µm in diameter, prokaryotic cells are significantly smaller than eukaryotic cells, which have diameters ranging from 10 to 100 µm (Figure 4.6). The prokaryotes' small size allows ions and organic molecules that enter them to quickly diffuse to other parts of the cell. Similarly, any wastes produced within a prokaryotic cell can quickly diffuse. This is not the case in eukaryotic cells, which have developed different structural adaptations to enhance intracellular transport.




Figure 4.6 This figure shows relative sizes of microbes on a logarithmic scale (recall that each unit of increase in a logarithmic scale represents a 10-fold increase in the quantity measured).

Small size, in general, is necessary for all cells, whether prokaryotic or eukaryotic. To understand why, we consider the area and volume of a typical cell. Not all cells are spherical in shape, but most tend to approximate a sphere. As the radius of a cell increases, its surface area increases, but its volume increases much more rapidly. Therefore, as a cell increases in size, its surface area-to-volume ratio decreases. If the cell grows too large, the plasma membrane will not have sufficient surface area to support the rate of diffusion required for the increased volume. In other words, as a cell grows, it becomes less efficient. One way to become more efficient is to divide. Other ways are to increase surface area by foldings of the cell membrane, becoming flat and elongated, or developing organelles that perform specific tasks. These adaptations lead to developing more sophisticated cells, which we call eukaryotic cells.

Eukaryotic Cells

Have you ever heard the phrase "form follows function?" It's a philosophy that many industries follow. In architecture, this means that buildings should be constructed to support the activities that will be carried out inside them. For example, a skyscraper should include several elevator banks. A hospital should have its emergency room easily accessible. Our natural world also utilizes the principle of form following function, especially in cell biology, and this will become clear as we explore eukaryotic cells (Figure 4.8). Unlike prokaryotic cells, **eukaryotic cells** have: 1) a membrane-bound nucleus; 2) numerous membrane-bound **organelles** such as the endoplasmic reticulum, Golgi apparatus, chloroplasts, mitochondria, and others; and 3) several, rod-shaped chromosomes. Because a membrane surrounds eukaryotic cell's nucleus, it has a "true nucleus." The word "organelle" means "little organ," and, as we already mentioned, organelles have specialized cellular functions, just as your body's organs have specialized functions.

At this point, it should be clear to you that eukaryotic cells have a more complex structure than prokaryotic cells. Organelles allow different functions to be compartmentalized in different areas of the cell. Two organelles are important for further consideration, the nucleus and ribosomes.

The Plasma Membrane

Like prokaryotes, eukaryotic cells have a **plasma membrane** (Figure 4.9), a phospholipid bilayer with embedded proteins that separates the internal contents of the cell from its surrounding environment. The plasma membrane controls the passage of organic molecules, ions, water, and oxygen into and out of the cell. Wastes (such as carbon dioxide and ammonia) also leave the cell by passing through the plasma membrane.

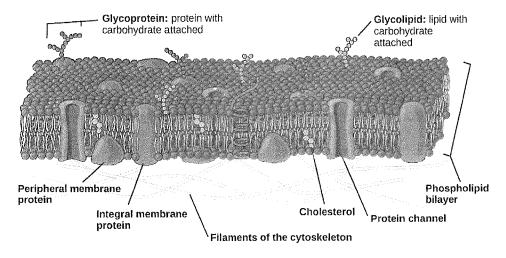


Figure 4.9 The eukaryotic plasma membrane is a phospholipid bilayer with proteins and cholesterol embedded in it.

The Cytoplasm

The **cytoplasm** is the cell's entire region between the plasma membrane and the nuclear envelope (a structure we will discuss shortly). It is comprised of organelles suspended in the gel-like **cytosol**, the cytoskeleton, and various chemicals (<u>Figure 4.8</u>). Even though the cytoplasm consists of 70 to 80 percent water, it has a semi-solid consistency, which comes from the proteins within it. However, proteins are not the only organic molecules in the cytoplasm. Glucose and other simple sugars, polysaccharides, amino acids, nucleic acids, fatty acids, and derivatives of glycerol are also there. Ions of sodium, potassium, calcium, and many other elements also dissolve in the cytoplasm. Many metabolic reactions, including protein synthesis, take place in the cytoplasm.

The Nucleus

Typically, the nucleus is the most prominent organelle in a cell. The **nucleus** (plural = nuclei) houses the cell's DNA and directs the synthesis of ribosomes and proteins. Let's look at it in more detail (Figure 4.11).

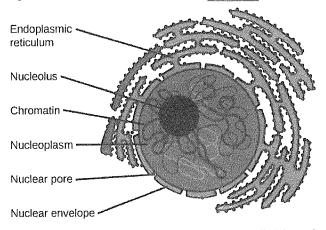


Figure 4.11 The nucleus stores chromatin (DNA plus proteins) in a gel-like substance called the nucleoplasm. The nucleolus is a condensed chromatin region where ribosome synthesis occurs. We call the nucleus' boundary the nuclear envelope. It consists of two phospholipid bilayers: an outer and an inner membrane. The nuclear membrane is continuous with the endoplasmic reticulum. Nuclear pores allow substances to enter and exit the nucleus.

The Nuclear Envelope

The **nuclear envelope** is a double-membrane structure that constitutes the nucleus' outermost portion (<u>Figure 4.11</u>). Both the nuclear envelope's inner and outer membranes are phospholipid bilayers. The nuclear envelope is punctuated with pores that control the passage of ions, molecules, and RNA between the nucleoplasm and cytoplasm. The **nucleoplasm** is the semi-solid fluid inside the nucleus, where we find the chromatin and the nucleolus.

Chromatin and Chromosomes

To understand chromatin, it is helpful to first explore **chromosomes**, structures within the nucleus that are made up of DNA, the hereditary material. You may remember that in prokaryotes, DNA is organized into a single circular chromosome. In eukaryotes, chromosomes are linear structures. Every eukaryotic species has a specific number of chromosomes in the nucleus of each cell. For example, in humans, the chromosome number is 46, while in fruit flies, it is eight. Chromosomes are only visible and distinguishable from one another when the cell is getting ready to divide. At all other times, when the cell is in the growth and maintenance phases of its life cycle, proteins attach to chromosomes, and they resemble an unwound, jumbled bunch of threads. We call these unwound protein-chromosome complexes **chromatin** (Figure 4.12). Chromatin describes the material that makes up the chromosomes both when condensed and decondensed.

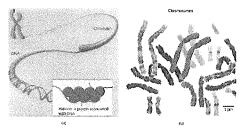


Figure 4.12 (a) This image shows various levels of chromatin's organization (DNA and protein). (b) This image shows paired chromosomes. (credit b: modification of work by NIH; scale-bar data from Matt Russell)

Ribosomes

Ribosomes are the cellular structures responsible for protein synthesis. When we view them through an electron microscope, ribosomes appear either as clusters (polyribosomes) or single, tiny dots that float freely in the cytoplasm. They may be attached to the plasma membrane's cytoplasmic side or the endoplasmic reticulum's cytoplasmic side and the nuclear envelope's outer membrane. Electron microscopy shows us that ribosomes, which are large protein and RNA complexes, consist of two subunits, large and small. Ribosomes receive their "orders" for protein synthesis from the nucleus where the DNA transcribes into messenger RNA (mRNA). The mRNA travels to the ribosomes, which translate the code provided by the sequence of the nitrogenous bases in the mRNA into a specific order of amino acids in a protein. Amino acids are the building blocks of proteins.

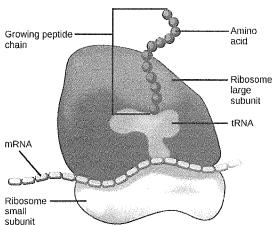


Figure 4.13 A large subunit (top) and a small subunit (bottom) comprise ribosomes. During protein synthesis, ribosomes assemble amino acids into proteins.

Because protein synthesis is an essential function of all cells (including enzymes, hormones, antibodies, pigments, structural components, and surface receptors), there are ribosomes in practically every cell. Ribosomes are particularly abundant in cells that synthesize large amounts of protein. For example, the pancreas is responsible for creating several digestive enzymes and the cells that produce these enzymes contain many ribosomes.

Cell Component	Function	Present in Prokaryotes?	Present in Animal Cells?	Present in Plant Cells?
Centrosome	Unspecified role in cell division in animal cells; microtubule source in animal cells	No	Yes	No
Lysosomes	Digestion of macromolecules; recycling of worn-out organelles	No	Yes	Some
Cell wall	Protection, structural support, and maintenance of cell shape	Yes, primarily peptidoglycan	No	Yes, primarily cellulose
Chloroplasts	Photosynthesis	No	No	Yes
Endoplasmic reticulum	Modifies proteins and synthesizes lipids	No	Yes	Yes
Golgi apparatus	Modifies, sorts, tags, packages, and distributes lipids and proteins	No	Yes	Yes
Cytoskeleton	Maintains cell's shape, secures organelles in specific positions, allows cytoplasm and vesicles to move within cell, and enables unicellular organisms to move independently	Yes	Yes	Yes
Flagella	Cellular locomotion	Some	Some	No, except for some plant sperm cells
Cilia	Cellular locomotion, movement of particles along plasma membrane's extracellular surface, and filtration	Some	Some	No

Lesson 3 Continuity of Life

INTRODUCTION

A human, like every sexually reproducing organism, begins life as a fertilized egg (embryo) or zygote. In our species, billions of cell divisions subsequently must occur in a controlled manner in order to produce a complex, multicellular human comprising trillions of cells. Thus, the original single-celled zygote is literally the ancestor of all cells in the body. However, once a human is fully grown, cell reproduction is still necessary to repair and regenerate tissues, and sometimes to increase our size! In fact, all multicellular organisms use cell division for growth and the maintenance and repair of cells and tissues.

Cell Division

Cell division is closely regulated, and the occasional failure of this regulation can have life-threatening consequences. Single-celled organisms may also use cell division as their method of reproduction. The continuity of life from one cell to another has its foundation in the reproduction of cells by way of the cell cycle. The cell cycle is an orderly sequence of events that describes the stages of a cell's life from the division of a single parent cell to the production of two new genetically identical daughter cells.

Genomic DNA

A cell's DNA, packaged as a double-stranded DNA molecule, is called its **genome**. In prokaryotes, the genome is composed of a single, double-stranded DNA molecule in the form of a loop or circle. The region in the cell containing this genetic material is called a nucleoid. Some prokaryotes also have smaller loops of DNA called plasmids that are not essential for normal growth. Bacteria can exchange these plasmids with other bacteria, sometimes receiving beneficial new genes that the recipient can add to their chromosomal DNA. *Antibiotic resistance* is one trait that often spreads through a bacterial colony through plasmid exchange from resistant donors to recipient cells.

In eukaryotes, the genome consists of several double-stranded linear DNA molecules (Figure 10.3). Each species of eukaryotes has a characteristic number of chromosomes in the nuclei of its cells. Human body (somatic) cells have 46 chromosomes, while human gametes (sperm or eggs) have 23 chromosomes each. A typical body cell contains two matched or homologous sets of chromosomes (one set from each biological parent)—a configuration known as **diploid**. (Note: The letter *n* is used to represent a single set of chromosomes; therefore, a diploid organism is designated 2*n*.) Human cells that contain one set of chromosomes are called gametes, or sex cells; these are eggs and sperm, and are designated 1*n*, or **haploid**.

Upon fertilization, each gamete contributes one set of chromosomes, creating a diploid cell containing matched pairs of chromosomes called **homologous** ("same knowledge") **chromosomes**. Homologous chromosomes are the same length and have specific nucleotide segments called **genes** in exactly the same location, or **locus**. Genes, the functional units of chromosomes, determine specific characteristics by coding for specific proteins. Traits are the variations of those characteristics. For example, hair color is a characteristic with traits that are blonde, brown, or black, and many colors in between.

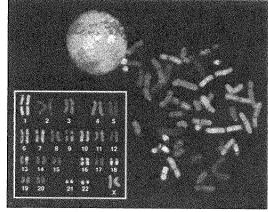


Figure 10.3 There are 23 pairs of homologous chromosomes in a female human somatic cell. The condensed chromosomes are viewed within the nucleus (top), removed from a cell during mitosis (also called karyokinesis or nuclear division) and spread out on a slide (right), and artificially arranged according to length (left); an arrangement like this is called a karyotype. In this image, the chromosomes were exposed to fluorescent stains for differentiation of the different chromosomes. A method of staining called "chromosome painting" employs fluorescent dyes that highlight chromosomes in different colors. (credit: National Human Genome Project/NIH)

Each copy of a homologous pair of chromosomes originates from a different parent; therefore, the different genes (alleles) themselves are not identical, although they code for the same traits such as "hair color." he variation of individuals within a species is due to the specific combination of the genes inherited from both parents. Even a slightly altered sequence of nucleotides within a gene can result in an alternative trait.

Apparently minor variations of traits, such as blood type, eye color, and handedness, contribute to the natural variation found within a species, but even though they seem minor, these traits may be connected with the expression of other traits as of yet unknown. However, if the entire DNA sequence from any pair of human homologous chromosomes is compared, the difference is much less than one percent. The sex chromosomes, X and Y, are the single exception to the rule of homologous chromosome uniformity: Other than a small amount of homology that is necessary to accurately produce gametes, the genes found on the X and Y chromosomes are different.

If the DNA from all 46 chromosomes in a human cell nucleus were laid out end-to-end, it would measure approximately two meters; however, its diameter would be only 2 nm! Considering that the size of a typical human cell is about 10 μ m (100,000 cells lined up to equal one meter), DNA must be tightly packaged to fit in the cell's nucleus. At the same time, it must also be readily accessible for the genes to be expressed. For this reason, the long strands of DNA are condensed into compact chromosomes during certain stages of the cell cycle.

The Cell Cycle

The **cell cycle** is an ordered series of events involving cell growth and cell division that produces two new daughter cells. Cells on the path to cell division proceed through a series of precisely timed and carefully regulated stages of growth, DNA replication, and nuclear and cytoplasmic division that ultimately produces two identical (clone) cells. The cell cycle has two major phases: interphase and the mitotic phase (Figure 10.5). During **interphase**, the cell grows and DNA is replicated. During the **mitotic phase**, the replicated DNA and cytoplasmic contents are separated, and the cell cytoplasm is typically partitioned by a third process of the cell cycle called **cytokinesis**.

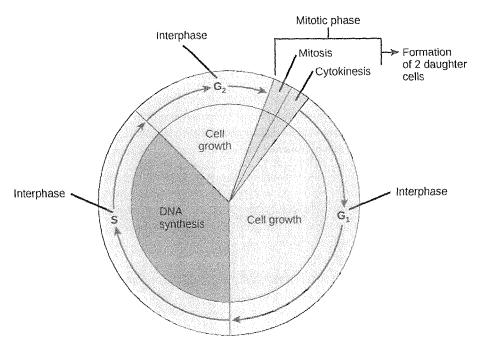


Figure 10.5 The cell cycle in multicellular organisms consists of interphase and the mitotic phase. During interphase, the cell grows and the nuclear DNA is duplicated. Interphase is followed by the mitotic phase. During the mitotic phase, the duplicated chromosomes are segregated and distributed into daughter nuclei. Following mitosis, the cytoplasm is usually divided as well by cytokinesis, resulting in two genetically identical daughter cells.

Prokaryotes, such as bacteria, produce daughter cells by binary fission. For unic ellular organisms, cell division is the only method to produce new individuals. In both prokaryotic and eukaryotic cells, the outcome of cell reproduction is a pair of daughter cells that are genetically identical to the parent cell. In unicellular organisms, daughter cells are individuals.

To achieve the outcome of cloned offspring, certain steps are essential. The genomic DNA must be replicated and then allocated into the daughter cells; the cytoplasmic contents must also be divided to give both new cells the cellular machinery to sustain life. As we've seen with bacterial cells, the genome consists of a single, circular DNA chromosome; therefore, the process of cell division is simplified. Karyokinesis is unnecessary because there is no true nucleus and thus no need to direct one copy of the multiple chromosomes into each daughter cell. This type of cell division is called **binary (prokaryotic) fission**.

Due to the relative simplicity of the prokaryotes, the cell division process is a less complicated and much more rapid process than cell division in eukaryotes.

Reproduction

The ability to reproduce is a basic characteristic of all organisms. However, offspring may or may not resemble their parents. Although many unicellular organisms and a few multicellular organisms can produce genetically identical clones of themselves through asexual reproduction, many single-celled organisms and most multicellular organisms reproduce regularly using another method—sexual reproduction. This highly evolved method involves the production by parents of two haploid cells and the fusion of two haploid cells to form a single, genetically recombined diploid cell—a genetically unique organism. Haploid cells that are part of the sexual reproductive cycle are produced by a type of cell division called meiosis. Sexual reproduction, involving both meiosis and fertilization, introduces variation into offspring that may account for the evolutionary success of sexual reproduction. The vast majority of eukaryotic organisms, both multicellular and unicellular, can or must employ some form of meiosis and fertilization to reproduce. In most plants and animals, through thousands of rounds of mitotic cell division, diploid cells (whether produced by asexual or sexual reproduction) will develop into an adult organism.

The Process of Meiosis

Sexual reproduction requires the union of two specialized cells, called **gametes**, each of which contains one set of chromosomes. When gametes unite, they form a **zygote**, or fertilized egg that contains two sets of chromosomes. (Note: Cells that contain one set of chromosomes are called **haploid**; cells containing two sets of chromosomes are called **diploid**.) If the reproductive cycle is to continue for any sexually reproducing species, then the diploid cell must somehow reduce its number of chromosome sets to produce haploid gametes; otherwise, the number of chromosome sets will double with every future round of fertilization. Therefore, sexual reproduction requires a nuclear division that reduces the number of chromosome sets by half.

Most animals and plants and many unicellular organisms are diploid and therefore have two sets of chromosomes. In each **somatic cell** of the organism (all cells of a multicellular organism except the gametes or reproductive cells), the nucleus contains two copies of each chromosome, called **homologous chromosomes**. Homologous chromosomes are matched pairs containing the same genes in identical locations along their lengths. Diploid organisms inherit one copy of each homologous chromosome from each parent.

Meiosis is the nuclear division that forms haploid cells from diploid cells, and it employs many of the same cellular mechanisms as mitosis. However, mitosis produces daughter cells whose nuclei are genetically identical to the original parent nucleus. In mitosis, both the parent and the daughter nuclei are at the same "ploidy level"—diploid in the case of most multicellular most animals. In meiosis, the starting nucleus is always diploid and the daughter nuclei that result are haploid. To achieve this reduction in chromosome number, meiosis consists of one round of chromosome replication followed by two rounds of nuclear division.

In essence, meiosis takes the chromosomes from maternal gametes, mixes them with chromosomes from fraternal gametes to produce a new, genetically similar but distinct individual. When homologous chromosomes "mix", there is an exchange of genetic material. Crossing over is a process where homologous chromosomes line up side-by-side and cross over each other, exchanging pieces of genetic material. This introduces genetic variation. In addition to crossing over, chromosome pairs separate and are distributed randomly into new gametes. The result is an assortment of new gametes (sex cells) each with a unique genetic makeup.

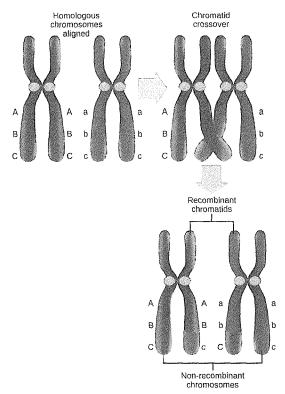


Figure 11.3 Crossover occurs between nonsister chromatids of homologous chromosomes. The result is an exchange of genetic material between homologous chromosomes.

Remember that the homologous chromosomes of a sexually reproducing organism are originally inherited as two separate sets, one from each parent. Using humans as an example, one set of 23 chromosomes is present in the egg donated by the mother. The father provides the other set of 23 chromosomes in the sperm that fertilizes the egg.

Humans have 23 chromosome pairs, which results in over eight million (2^{23}) possible genetically-distinct gametes just from the random alignment of chromosomes. This number does not include variability that is introduced in mechanisms such as crossing over, where chromatids cross over each other and exchange genetic material. Given these two mechanisms, it is highly unlikely that any two haploid cells resulting from meiosis will have the same genetic composition.

To summarize, meiosis I creates genetically diverse gametes in two ways. First, crossover events between each homologous pair of chromosomes generate recombinant chromatids with new combinations of maternal and paternal genes. Second, the random assortment of chromosomes produces unique combinations of maternal and paternal chromosomes that will make their way into the gametes.

Comparing Meiosis and Mitosis

Mitosis and meiosis are both forms of division of the nucleus in eukaryotic cells. They share some similarities, but also exhibit a number of important and distinct differences that lead to very different outcomes. Mitosis is a single nuclear division that results in two nuclei that are usually partitioned into two new cells. The nuclei resulting from a mitotic division are genetically identical to the original nucleus. They have the same number of sets of chromosomes: one set in the case of haploid cells and two sets in the case of diploid cells. In contrast, meiosis consists of two nuclear divisions resulting in four nuclei that are usually partitioned into four new, genetically distinct cells. The four nuclei produced during meiosis are not genetically identical, and they contain one chromosome set only. This is half the number of chromosome sets in the original cell, which is diploid.

Sexual Reproduction

Sexual reproduction is the combination of (usually haploid) reproductive cells from two individuals to form a third (usually diploid) unique offspring. Sexual reproduction produces offspring with novel combinations of genes. This can be an adaptive advantage in unstable or unpredictable environments. As humans, we are used to thinking of animals as having two separate sexes—male and female—determined at conception. However, keep in mind that in the animal kingdom, there are many variations on this theme.

Sex Determination

In humans (and other mammals) sex determination is determined genetically by the presence of X and Y chromosomes. Individuals homozygous for X (XX) are female and heterozygous individuals (XY) are male. The presence of a Y chromosome causes the development of male characteristics and its absence results in female characteristics. The XY system is also found in some insects and plants.

Human Gametogenesis

Gametogenesis, the production of sperm and eggs, takes place through the process of meiosis. During meiosis, two cell divisions separate the paired chromosomes in the nucleus and then separate the chromatids that were made during an earlier stage of the cell's life cycle. Meiosis produces haploid cells with half of each pair of chromosomes normally found in diploid cells. The production of sperm is called **spermatogenesis** and the production of eggs is called **oogenesis**.

Fertilization

Sexual reproduction starts with the combination of a sperm and an egg in a process called fertilization. Fertilization is the process in which gametes (an egg and sperm) fuse to form a zygote. The egg and sperm each contain one set of chromosomes. To ensure that the offspring has only one complete diploid set of chromosomes, only one sperm must fuse with one egg.

Fertilization can occur either inside (internal fertilization) or outside (external fertilization) the body of the female. Humans provide an example of internal fertilization whereas seahorse reproduction is an example of external fertilization.

The process in which an organism develops from a single-celled zygote to a multi-cellular organism is complex and well-regulated. The early stages of embryonic development are also crucial for ensuring the fitness of the organism.

Evolution of Sexual Reproduction

Sexual reproduction was likely an early evolutionary innovation after the appearance of eukaryotic cells. It appears to have been very successful because most eukaryotes are able to reproduce sexually and, in many animals, it is the only mode of reproduction. And yet, scientists also recognize some real disadvantages to sexual reproduction. On the surface, creating offspring that are genetic clones of the parent appears to be a better system. If the parent organism is successfully occupying a habitat, offspring with the same traits should be similarly successful. There is also the obvious benefit to an organism that can produce offspring whenever circumstances are favorable by asexual budding, fragmentation, or by producing eggs asexually. These methods of reproduction do not require another organism of the opposite sex. Indeed, some organisms that lead a solitary lifestyle have retained the ability to reproduce asexually. In addition, in asexual populations, every individual is capable of reproduction. In sexual populations, the males are not producing the offspring themselves, so hypothetically an asexual population could grow twice as fast.

However, multicellular organisms that exclusively depend on asexual reproduction are exceedingly rare. Why are meiosis and sexual reproductive strategies so common? These are important (and as yet unanswered) questions in biology, even though they have been the focus of much research beginning in the latter half of the 20th century. There are several possible explanations, one of which is that the variation that sexual reproduction creates among offspring is very important to the survival and reproduction of the population. Thus, on average, a sexually reproducing population will leave more descendants than an otherwise similar asexually reproducing population. The only source of variation in asexual organisms is mutation. Mutations that take place during the formation of germ cell lines are also the ultimate source of variation in sexually reproducing organisms. However, in contrast to mutation during asexual reproduction, the mutations during sexual reproduction can be continually reshuffled from one generation to the next when different parents combine their unique genomes and the genes are mixed into different combinations by crossovers and during random assortment.

Sexual reproduction takes many forms in multicellular organisms. The fact that nearly every multicellular organism on Earth employs sexual reproduction is strong evidence for the benefits of producing offspring with unique gene combinations, though there are other possible benefits as well.

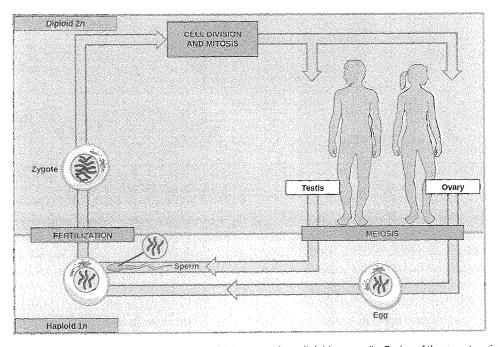


Figure 11.8 In animals, sexually reproducing adults form haploid gametes from diploid germ cells. Fusion of the gametes gives rise to a fertilized egg cell, or zygote. The zygote will undergo multiple rounds of mitosis to produce a multicellular offspring. The germ cells are generated early in the development of the zygote.

Lesson 4 Genetics

INTRODUCTION Genetics is the study of heredity. Johann Gregor Mendel set the framework for genetics long before chromosomes or genes had been identified, at a time when meiosis was not well understood. Mendel selected a simple biological system and conducted methodical, quantitative analyses using large sample sizes.

Through his extensive study on the inheritance patterns in pea plants, Mendel was able to demonstrate that traits are transmitted from parents to offspring independently of other traits and in dominant and recessive patterns. Up until that point, it was, incorrectly, believed that the process of inheritance involved a blending of parental traits that produced an intermediate physical appearance in offspring. The **blending theory of inheritance** asserted that the original parental traits were lost or absorbed by the blending in the offspring, but we now know that this is not the case.

Because of Mendel's work, the fundamental principles of heredity were revealed. We now know that genes, carried on chromosomes, are the basic functional units of heredity with the capability to be replicated, expressed, or mutated. Today, the postulates put forth by Mendel form the basis of classical, or Mendelian, genetics. Not all genes are transmitted from parents to offspring according to Mendelian genetics, but Mendel's experiments serve as an excellent starting point for thinking about inheritance.

Figure 12.2 Johann Gregor Mendel is considered the father of genetics.

While performing thousands of crosses between pea plant varieties, Mendel reported the results of crosses involving seven different characteristics of pea plants, each with two contrasting traits. A **trait** is defined as a variation in the physical appearance of a heritable characteristic. The characteristics included plant height, seed texture, seed color, flower color, pea pod size, pea pod color, and flower position. For the characteristic of flower color, for example, the two contrasting traits were white versus violet. Mendel concluded that the characteristics could be divided into expressed and latent traits. He called these, respectively, dominant and recessive traits. Dominant traits are those that are inherited unchanged in a hybridization. Recessive traits become latent, or disappear, in the offspring of a hybridization. The recessive trait does, however, reappear in the progeny of the hybrid offspring. Mendel also proposed that plants possessed two copies of the trait for the flower-color characteristic, and that each parent transmitted one of its two copies to its offspring, where they came together.

To fully examine each characteristic, Mendel generated large numbers of crossed plants, reporting results from 19,959 plants in one generation alone. His observations were mathematically consistent. Mendel pioneered the idea of applying mathematics, specifically the laws of probability, to the understanding of inheritance.

Probability Basics

Probabilities are mathematical measures of likelihood. The empirical probability of an event is calculated by dividing the number of times the event occurs by the total number of opportunities for the event to occur. It is also possible to calculate theoretical probabilities by dividing the number of times that an event is expected to occur by the number of times that it could occur. Empirical probabilities come from observations, like those of Mendel. Theoretical probabilities, on the other hand, come from knowing how the events are produced and assuming that the probabilities of individual outcomes are equal. A probability of one (1) for some event indicates that it is guaranteed to occur, whereas a probability of zero (0) indicates that it is guaranteed not to occur. An example of a genetic event is a round seed produced by a pea plant.

In order for probabilities to be useful in the study of genetics, large numbers of crosses must be randomly performed. Mendel was able to calculate probabilities and use these to predict the outcomes of other crosses. He could predict with some accuracy, the result or offspring of a particular cross.

Imagine that you are rolling a six-sided die (D) and flipping a penny (P) at the same time. The die may roll any number from 1–6 ($D_{\#}$), whereas the penny may turn up heads (P_{H}) or tails (P_{T}). The outcome of rolling the die has no effect on the outcome of flipping the penny and vice versa. There are 12 possible outcomes of this action, and each event is expected to occur with equal probability.

We can use this kind of information to make predictions about the likelihood of certain events occurring. For example, what is the probability that you would roll a four (4) and the penny would come up tails? We can use math, and more specifically, the **product rule** of probability to calculate the probability or likelihood of these two events occurring together. In order to calculate this likelihood we would perform a multiplication (product) operation of the two probabilities.

On the other hand, the **sum rule** of probability is applied when considering two mutually exclusive outcomes that can come about by more than one pathway. The sum rule states that the probability of the occurrence of one event **or** the other event, is the sum of their individual probabilities.

To use probability laws in practice, we must work with large sample sizes because small sample sizes are prone to deviations caused by chance. The large quantities of pea plants that Mendel examined allowed him calculate the probabilities of the traits appearing in his second generation. As you will learn, this discovery meant that when parental traits were known, the offspring's traits could be predicted accurately even before fertilization.

The Product Rule and Sum Rule

Product Rule	Sum Rule	
For independent events A and B, the probability (P) of them both occurring (A and B) is $(P_A \times P_B)$	For mutually exclusive events A and B, the probability (P) that at least one occurs (A or B) is ($P_A + P_B$)	

A **Punnett square**, devised by the British geneticist Reginald Punnett, can be drawn that applies the rules of probability to predict the possible outcomes of a genetic cross or mating and their expected frequencies. To prepare a Punnett square, all possible genetic combinations from each parent are drawn along a grid, the horizontal axis consists of the gametes (egg or sperm) of one parent and the vertical axis consists of the gametes of the second parent. The parental possibilities are then recombined (simulating fertilization) to produce all possible offspring. Because each possibility is equally likely, we can calculate mathematical ratios of genetics from a Punnett square.

Chromosomal Theory of Inheritance

Long before scientists visualized chromosomes under a microscope, the father of modern genetics, Gregor Mendel, began studying heredity in 1843. With improved microscopic techniques during the late 1800s, cell biologists could stain and visualize subcellular structures with dyes and observe their actions during cell division and meiosis. With each mitotic division, chromosomes replicated, condensed from an amorphous (no constant shape) nuclear mass into distinct X-shaped bodies (pairs of identical sister chromatids), and migrated to separate cellular poles.

The speculation that chromosomes might be the key to understanding heredity led several scientists to examine Mendel's publications and reevaluate his model in terms of chromosome behavior during mitosis and meiosis. In 1902, Theodor Boveri observed that proper sea urchin embryonic development does not occur unless chromosomes are present. That same year Walter Sutton observed chromosome separation into daughter cells during meiosis. Together these observations led to the **Chromosomal Theory of Inheritance**, which identified chromosomes as the genetic material responsible for Mendelian inheritance.

The Chromosomal Theory of Inheritance was consistent with Mendel's laws, which the following observations supported:

- During meiosis, homologous chromosome pairs migrate as discrete structures that are independent of other chromosome pairs.
- Chromosome sorting from each homologous pair into pre-gametes appears to be random.
- Each parent synthesizes gametes that contain only half their chromosomal complement.
- Even though male and female gametes (sperm and egg) differ in size and morphology, they have the same number of chromosomes, suggesting equal genetic contributions from each parent.
- The gametic chromosomes combine during fertilization to produce offspring with the same chromosome number as their parents.

The gene is the physical unit of inheritance, and genes are arranged in a linear order on chromosomes. Chromosome behavior and interaction during meiosis explain, at a cellular level, inheritance patterns that we observe in populations. Genetic disorders involving alterations in chromosome number or structure may have dramatic effects and can prevent a fertilized egg from developing.

DNA

The three letters "DNA" have now become synonymous with crime solving and genetic testing. DNA can be retrieved from hair, blood, or saliva. Each person's DNA is unique, and it is possible to detect differences between individuals within a species on the basis of these unique features.

DNA analysis has many practical applications beyond forensics. In humans, DNA testing is applied to numerous uses: determining paternity, tracing genealogy, identifying pathogens, archeological research, tracing disease outbreaks, and studying human migration patterns. In the medical field, DNA is used in diagnostics, new vaccine development, and cancer therapy. It is now possible to determine predisposition to diseases by looking at genes.

Each human cell has 23 pairs of chromosomes: one set of chromosomes is inherited from the mother and the other set is inherited from the father. There is also a mitochondrial genome, inherited exclusively from the mother, which can be involved in inherited genetic disorders. On each chromosome, there are thousands of genes that are responsible for determining the genotype and phenotype of the individual. A gene is defined as a sequence of DNA that codes for a functional product. The human haploid genome contains 3 billion base pairs (the building blocks of DNA) and has between 20,000 and 25,000 functional genes.

Our current understanding of DNA began with the discovery of nucleic acids followed by the development of the double-helix model.

In the 1950s, Francis Crick and James Watson worked together to determine the structure of DNA at the University of Cambridge, England. Other scientists were also actively exploring this field.

Watson and Crick were able to piece together the puzzle of the DNA molecule. In 1962, James Watson, Francis Crick, and Maurice Wilkins were awarded the Nobel Prize in Medicine.

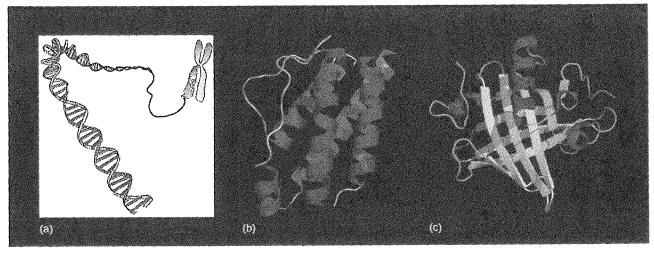


Figure 15.1 Genes, which are carried on (a) chromosomes, are linearly organized instructions for making the RNA and protein molecules that are necessary for all of the processes of life. The (b) interleukin-2 protein and (c) alpha-2u-globulin protein are just two examples of the array of different molecular structures that are encoded by genes. (credit "chromosome: National Human Genome Research Institute; credit "interleukin-2": Ramin Herati/Created from PDB 1M47 and rendered with Pymol; credit "alpha-2u-globulin": Darren Logan/rendered with AISMIG)

The Genetic Code

Since the rediscovery of Mendel's work in 1900, the definition of the gene has progressed from an abstract unit of heredity to a tangible molecular entity capable of replication, expression, and mutation (Figure 15.1). Genes are composed of DNA and are linearly arranged on chromosomes. Genes specify the sequences of amino acids, which are the building blocks of proteins. In turn, proteins are responsible for orchestrating nearly every function of the cell. Both genes and the proteins they encode are absolutely essential to life as we know it.

Protein sequences consist of 20 commonly occurring amino acids; therefore, it can be said that the protein alphabet consists of 20 "letters". Different amino acids have different chemistries (such as acidic versus basic, or polar and nonpolar) and different structural constraints. Variation in amino acid sequence is responsible for the enormous variation in protein structure and function.

The flow of genetic information in cells from DNA to RNA to protein is described by the central dogma of DNA-protein synthesis, which states that genes specify the sequence of RNA molecules, which in turn specify the sequence of amino acids making up all proteins. The decoding of one molecule to another is performed by specific proteins and RNAs. Because the information stored in DNA is so central to cellular function, it makes intuitive sense that the cell would make RNA copies of this information for protein synthesis, while keeping the DNA itself intact and protected, never leaving the nucleus of a cell. The copying of DNA to RNA is relatively straightforward, while the translation to protein is a bit more complex. However, both processes occur systematically over and over with relative precision (mutations do happen) and proceed with the same genetic "rules" in each individual. The genetic code is nearly universal. With a few minor exceptions, virtually all species use the same genetic code for protein synthesis.

The use of a universal amino acid code means that the code for a protein in horses could be transferred to a tulip cell, and the tulip would synthesize the horse protein. The fact that there is only one genetic code is powerful evidence that all of life on Earth shares a common origin, especially considering that there are about 10⁸⁴ possible combinations of 20 amino acids.

Lesson 5 Evolution

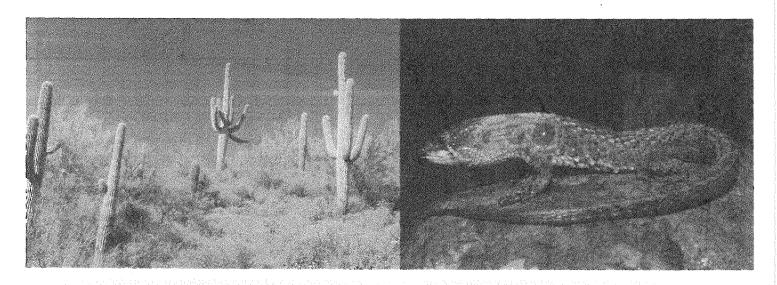


Figure 18.1 All organisms are products of evolution adapted to their environment. (a) Saguaro (Carnegiea gigantea) can soak up 750 liters of water in a single rain storm, enabling these cacti to survive the dry conditions of the Sonora desert in Mexico and the Southwestern United States. (b) The Andean semiaquatic lizard (Potamites montanicola) discovered in Peru in 2010 lives between 1,570 to 2,100 meters in elevation, and, unlike most lizards, is nocturnal and swims. Scientists still do not know how these cold-blood animals are able to move in the cold (10 to 15°C) temperatures of the Andean night. (credit a: modification of work by Gentry George, U.S. Fish and Wildlife Service; credit b: modification of work by Germán Chávez and Diego Vásquez, ZooKeys)

INTRODUCTION All living organisms, from bacteria to baboons to blueberries, evolved at some point from a different species. Although it may seem that living things today stay much the same, that is not the case—evolution is an ongoing process.

The theory of evolution is the unifying theory of biology, meaning it is the framework within which biologists ask questions about the living world. Its power is that it provides direction for predictions about living things that are borne out in ongoing experiments. The Ukrainian-born American geneticist Theodosius Dobzhansky famously wrote that "nothing makes sense in biology except in the light of evolution." He meant that the tenet that all life has evolved and diversified from a common ancestor is the foundation from which we approach all questions in biology.

Understanding Evolution

Evolution by natural selection describes a mechanism for how species change over time. Scientists, philosophers, researchers, and others had made suggestions and debated this topic for centuries, going as far back as the classical Greek philosophers.

During the eighteenth century, James Hutton, a Scottish geologist and naturalist, proposed that geological change occurred gradually by accumulating small changes from processes operating like they are today over long periods of time. This contrasted with the predominant view that the planet's geology was a consequence of catastrophic events occurring during a relatively brief past. In the early nineteenth century, Jean-Baptiste Lamarck published a book that detailed a mechanism for evolutionary change. We now refer to this mechanism as an inheritance of acquired characteristics by which the environment causes modifications in an individual, or offspring could use or disuse of a structure during its lifetime, and thus bring about change in a species. While many discredited this mechanism for evolutionary change, Lamarck's ideas were an important influence on evolutionary thought.

Charles Darwin and Natural Selection

In the mid-nineteenth century, two naturalists, Charles Darwin and Alfred Russel Wallace, independently conceived and described the actual mechanism for evolution. Importantly, each naturalist spent time exploring the natural world on expeditions around the globe. During his time spent in the Galápagos Islands, Darwin made metitculous observations related to patterns in species. Darwin developed theory as the the observations he experienced and called this mechanism natural selection. **Natural selection**, or "survival of the fittest," is the more prolific reproduction of individuals with favorable traits that survive environmental change because of those traits. This leads to evolutionary change.

Natural selection, Darwin argued, was an inevitable outcome of three principles that operated in nature. First, most characteristics of organisms are inherited, or passed from parent to offspring. Although no one, including Darwin knew how this happened at the time, it was a common understanding. Second, more offspring are produced than are able to survive, so resources for survival and reproduction are limited. The capacity for reproduction in all organisms outstrips the availability of resources to support their numbers. Thus, there is competition for those resources in each generation. Third, offspring vary among each other in regard to their characteristics and those variations are inherited. Darwin reasoned that offspring with inherited characteristics which allow them to best compete for limited resources will survive and have more offspring than those individuals with variations that are less able to compete. Because characteristics are inherited, these traits will be better represented in the next generation. This will lead to change in populations over generations in a process that Darwin called descent with modification. Ultimately, natural selection leads to greater adaptation of the population to its local environment. It is the only mechanism known for adaptive evolution.

Evidence of Evolution

Altough it is difficult and time-consuming to document and present examples of evolution by natural selection, the evidence for evolution is compelling and extensive. Looking at every level of organization in living systems, biologists see the signature of past and present evolution. Darwin dedicated a large portion of his book, On the Origin of Species, to identifying patterns in nature that were consistent with evolution, and since Darwin, our understanding has become clearer and broader.

Fossils

Fossils provide solid evidence that organisms from the past are not the same as those today, and fossils show a progression of evolution. Scientists determine the age of fossils and categorize them from all over the world to determine when the organisms lived relative to each other. The resulting fossil record tells the story of the past and shows the evolution of form over millions of years. For example, scientists have recovered highly detailed records showing the evolution of humans and horses. The whale flipper shares a similar morphology to bird and mammal appendages indicating that these species share a common ancestor.

Anatomy and Embryology

Another type of evidence for evolution is the presence of structures in organisms that share the same basic form. For example, the bones in human, dog, bird, and whale appendages all share the same overall construction (Figure 18.7) resulting from their origin in a common ancestor's appendages. Over time, evolution led to changes in the bones' shapes and sizes different species, but they have maintained the same overall layout.

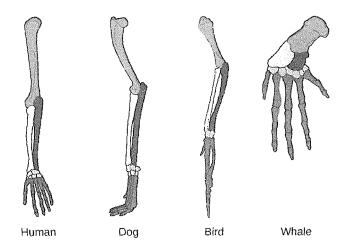


Figure 18.7 The similar construction of these appendages indicates that these organisms share a common ancestor. However, not all commonalities can be explained by ancestral relationship. Similar characteristics may also occur because of environmental factors rather than evolutionary relationship. For example, insects use wings to fly like bats and birds, but the wing structure and embryonic origin are completely different.

Another evidence of evolution is the convergence of form in organisms that share similar environments. For example, species of unrelated animals, such as the arctic fox and ptarmigan, living in the arctic region have been selected for seasonal white phenotypes during winter to blend with the snow and ice. These similarities occur not because of common ancestry, but because of similar selection pressures—the benefits of predators not seeing them.

Molecular Biology

Like anatomical structures, the molecular structures of life reflect descent with modification. DNA's universality reflects evidence of a common ancestor for all of life. Fundamental divisions in life between the genetic code, DNA replication, and expression are reflected in major structural differences in otherwise conservative structures such as ribosome components and membrane structures. In general, the relatedness of groups of organisms is reflected in the similarity of their DNA sequences—exactly the pattern that we would expect from descent and diversification from a common ancestor.

Misconceptions of Evolution

The theory of evolution has generated some controversy since Darwin first proposed it. The theory is a difficult concept and misconceptions about how it works abound.

Evolution Is Just a Theory

Critics of the theory of evolution dismiss its importance by purposefully confounding the everyday usage of the word "theory" with the way scientists use the word. In science, we understand a "theory" to be a body of thoroughly tested and verified explanations for a set of observations of the natural world. Scientists have a theory of the atom, a theory of gravity, and the theory of relativity, each which describes understood facts about the world. In the same way, the theory of evolution describes facts about the living world. As such, a theory in science has survived significant efforts to discredit it by scientists. In contrast, a "theory" in common vernacular is a word meaning a guess or suggested explanation. This meaning is more akin to the scientific concept of "hypothesis." When critics of evolution say it is "just a theory," they are implying that there is little evidence supporting it and that it is still in the process of rigorous testing. This is a mischaracterization.

Individuals Evolve

Evolution is the change in a population's genetic composition over time, specifically over generations, resulting from differential reproduction of individuals with certain alleles. Individuals do change over their lifetime, obviously, but this is development and involves changes programmed by the set of genes the individual acquired at birth in coordination with the individual's environment. When thinking about the evolution of a characteristic, it is probably best to think about the change of the average value of the characteristic in the population over time.

Evolution Explains the Origin of Life

It is a common misunderstanding that evolution includes an explanation of life's origins. Conversely, some of the theory's critics believe that it cannot explain the origin of life. The theory does not try to explain the origin of life. The theory of evolution explains how populations change over time and how life diversifies the origin of species. It does not shed light on the beginnings of life including the origins of the first cells, which define life. Importantly, biologists believe that the presence of life on Earth precludes the possibility that the events that led to life on Earth can repeat themselves because the intermediate stages would immediately become food for existing living things.

Organisms Evolve on Purpose

Statements such as "organisms evolve in response to a change in an environment" are quite common, but such statements can lead to two types of misunderstandings. First, do not interpret the statement to mean that individual organisms evolve. The statement is shorthand for "a population evolves in response to a changing environment." However, a second misunderstanding may arise by interpreting the statement to mean that the evolution is somehow intentional. A changed environment results in some individuals in the population, those with particular phenotypes, benefiting and therefore producing proportionately more offspring than other phenotypes. This results in change in the population if the characteristics are genetically determined.

It is also important to understand that the variation that natural selection works on is already in a population and does not arise in response to an environmental change. For example, applying antibiotics to a population of bacteria will, over time, select a population of bacteria that are resistant to antibiotics. The resistance, which a gene causes, did not arise by mutation because of applying the antibiotic. The gene for resistance was already present in the bacteria's gene pool, likely at a low frequency. The antibiotic, which kills the bacterial cells without the resistance gene, strongly selects individuals that are resistant, since these would be the only ones that survived and divided.

In a larger sense, evolution is not goal directed. Species do not become "better" over time. They simply track their changing environment with adaptations that maximize their reproduction in a particular environment at a particular time. Evolution has no goal of making faster, bigger, more complex, or even smarter species, despite the commonness of this kind of language in popular discourse. What characteristics evolve in a species are a function of the variation present and the environment, both of which are constantly changing in a nondirectional way. A trait that fits in one environment at one time may well be fatal at some point in the future.

Lesson 6 Ecology

INTRODUCTION

Ecology is the study of the interactions of living organisms with their environment. One core goal of ecology is to understand the distribution and abundance of living things in the physical environment. Attainment of this goal requires the integration of scientific disciplines inside and outside of biology, such as mathematics, statistics, biochemistry, molecular biology, physiology, evolution, biodiversity, geology, and climatology.

Levels of Ecological Study

When a discipline such as biology is studied, it is often helpful to subdivide it into smaller, related areas. For instance, cell biologists interested in cell signaling need to understand the chemistry of the signal molecules (which are usually proteins) as well as the result of cell signaling. Ecologists interested in the factors that influence the survival of an endangered species might use mathematical models to predict how current conservation efforts affect endangered organisms.

To produce a sound set of management options, a conservation biologist needs to collect accurate data, including current population size, factors affecting reproduction (like physiology and behavior), habitat requirements (such as plants and soils), and potential human influences on the endangered population and its habitat (which might be derived through studies in sociology and urban ecology). Within the discipline of ecology, researchers work at four general levels, which sometimes overlap. These levels are organism, population, community, and ecosystem (Figure 44.2).

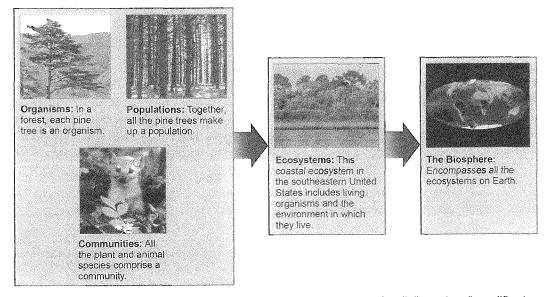


Figure 44.2 Ecologists study within several biological levels of organization. (credit "organisms": modification of work by yeowatzup"/Flickr; credit "populations": modification of work by "Crystl"/Flickr; credit "communities": modification of work by US Fish and Wildlife Service; credit "ecosystems": modification of work by Tom Carlisle, US Fish and Wildlife Service Headquarters; credit "biosphere": NASA)

Ecosystems

Life in an ecosystem is often about competition for limited resources, a characteristic of the theory of natural selection. Competition in communities (all living things within specific habitats) is observed both within species and among different species. The resources for which organisms compete include organic material, sunlight, and mineral nutrients, which provide the energy for living processes and the matter to make up organisms' physical structures. Other critical factors influencing community dynamics are the components of its physical and geographic environment: a habitat's latitude, amount of rainfall, topography (elevation), and available species. These are all important environmental variables that determine which organisms can exist within a particular area.

An **ecosystem** is a community of living organisms and their interactions with their abiotic (nonliving) environment. Ecosystems can be small, such as the tide pools found near the rocky shores of many oceans, or large, such as the Amazon Rainforest in Brazil (Figure 46.2).

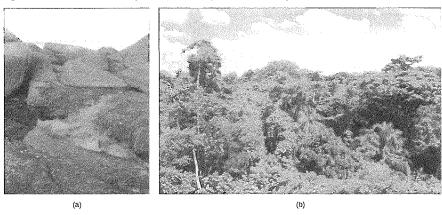


Figure 46.2 A (a) tidal pool ecosystem in Matinicus Island in Maine is a small ecosystem, while the (b) Amazon Rainforest in Brazil is a large ecosystem. (credit a: modification of work by "takomabibelot"/Flickr; credit b: modification of work by Ivan Mlinaric)

There are three broad categories of ecosystems based on their general environment: freshwater, ocean water, and terrestrial. Within these broad categories are individual ecosystem types based on the organisms present and the type of environmental habitat.

Ocean ecosystems are the most common, comprising over 70 percent of the Earth's surface and consisting of three basic types: shallow ocean, deep ocean water, and deep ocean surfaces (the low depth areas of the deep oceans). The shallow ocean ecosystems include extremely biodiverse coral reef ecosystems, and the deep ocean surface is known for its large numbers of plankton and krill (small crustaceans) that support it. These two environments are especially important to aerobic respirators worldwide as the phytoplankton perform 40 percent of all photosynthesis on Earth. Although not as diverse as the other two, deep ocean ecosystems contain a wide variety of marine organisms. Such ecosystems exist even at the bottom of the ocean where light is unable to penetrate through the water.

Freshwater ecosystems are the rarest, occurring on only 1.8 percent of the Earth's surface. Lakes, rivers, streams, and springs comprise these systems. They are quite diverse, and they support a variety of fish, amphibians, reptiles, insects, phytoplankton, fungi, and bacteria.

Terrestrial ecosystems, also known for their diversity, are grouped into large categories called biomes, such as tropical rain forests, savannas, deserts, coniferous forests, deciduous forests, and tundra. Grouping these ecosystems into just a few biome categories obscures the great diversity of the individual ecosystems within them. For example, there is great variation in desert vegetation: the saguaro cacti and other plant life in the Sonoran Desert, in the United States, are relatively abundant compared to the desolate rocky desert of Boa Vista, an island off the coast of Western Africa.

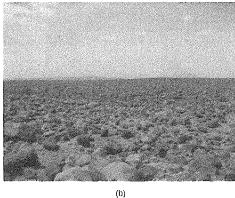


Figure 46.3 Desert ecosystems, like all ecosystems, can vary greatly. The desert in (a) Sag uaro National Park, Arizona, has abundant plant life, while the rocky desert of (b) Boa Vis ta island, Cape Verde, Africa, is devoid of plant life. (credit a: modification of work by Jay Galvin; credit b: modification of work by Ingo Wölbern)

Ecosystems are complex with many interacting parts. They are routinely exposed to various disturbances, or changes in the environment that effect their compositions: yearly variations in rainfall and temperature and the slower processes of plant growth, which may take several years. Many of these disturbances result from natural processes. The impact of environmental disturbances caused by human activities is as important as the changes wrought by natural processes. Human agricultural practices, air pollution, acid rain, global deforestation, overfishing, eutrophication, oil spills, and waste dumping on land and into the ocean are all issues of concern to conservationists.

The Biodiversity Crisis

Traditionally, ecologists have measured biodiversity, a general term for the number of species present in the biosphere, by taking into account both the number of species and their relative abundance to each other. Biodiversity can be estimated at a number of levels of organization of living organisms. These estimations are most useful as a first step in quantifying biodiversity between and within ecosystems; they are less useful when the main concern among conservation biologists is simply the loss of biodiversity. However, biologists recognize that measures of biodiversity, in terms of species diversity, may help focus efforts to preserve the biologically or technologically important elements of biodiversity.

Extinction is a natural process of macroevolution that occurs at the rate of about one out of 1 million species becoming extinct per year. The fossil record reveals that there have been five periods of mass extinction in history with much higher rates of species loss, and the rate of species loss today is comparable to those periods of mass extinction. However, there is a major difference between the previous mass extinctions and the current extinction we are experiencing: human activity. Specifically, three human activities have a major impact: 1) destruction of habitat, 2) introduction of exotic species, and 3) over-harvesting. Predictions of species loss within the next century, a tiny amount of time on geological timescales, range from 10 percent to 50 percent. Extinctions on this scale have only happened five other times in the history of the planet, and these extinctions were caused by cataclysmic events that changed the course of the history of life in each instance.

Conservation of Biodiversity

In 1988, British environmentalist Norman Myers developed a conservation concept to identify areas rich in species and at significant risk for species loss: biodiversity hotspots. Biodiversity hotspots are geographical areas that contain high numbers of endemic species. The purpose of the concept was to identify important locations on the planet for conservation efforts, a kind of conservation triage. By protecting hotspots, governments are able to protect a larger number of species. The original criteria for a hotspot included the presence of 1500 or more endemic plant species and 70 percent of the area disturbed by human activity. There are now 34 biodiversity hotspots Figure 47.4) containing large numbers of endemic species, which include half of Earth's endemic plants.

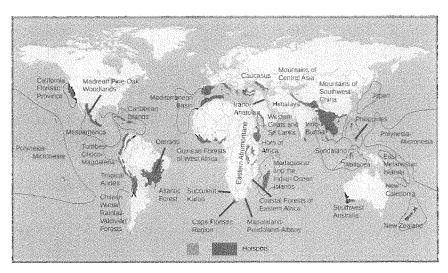


Figure 47.4 Conservation International has identified 34 biodiversity hotspots, which cover only 2.3 percent of the Earth's surface but have endemic to them 42 percent of the terrestrial vertebrate species and 50 percent of the world's plants.

The Importance of Biodiversity to Human Life

It may not be clear why biologists are concerned about biodiversity loss. When biodiversity loss is thought of as the extinction of the passenger pigeon, the dodo bird, and even the woolly mammoth, the loss may appear to be an emotional one. But is the loss practically important for the welfare of the human species? From the perspective of evolution and ecology, the loss of a particular individual species is unimportant (however, we should note that the loss of a keystone species can lead to ecological disaster). Extinction is a normal part of macroevolution. But theaccelerated extinction rate translates into the loss of tens of thousands of species within our lifetimes, and it is likely to have dramatic effects on human welfare through the collapse of ecosystems and in added costs to maintain food production, clean air and water, and human health.

Threats to Biodiversity

The core threat to biodiversity on the planet, and therefore a threat to human welfare, is the combination of human population growth and resource exploitation. The human population requires resources to survive and grow, and those resources are being removed unsustainably from the environment. The three greatest proximate threats to biodiversity are habitat loss, overharvesting, and the introduction of exotic species. The first two of these are a direct result of human population growth and resource use. The third results from increased mobility and trade. A fourth major cause of extinction, climate change, has not yet had a large impact, but it is predicted to become significant during this century. Global climate change is also a consequence of human population needs for energy and the use of fossil fuels to meet those needs. Environmental issues, such as toxic pollution, have specific targeted effects on species, but they are not generally seen as threats at the magnitude of the others.

Climate Change

All biomes are universally affected by global conditions, such as climate, that ultimately shape each biome's environment. Scientists who study climate have noted a series of marked changes that have gradually become increasingly evident during the last sixty years.

Global climate change is the term used to describe altered global weather patterns, especially a worldwide increase in temperature and resulting changes in the climate, due largely to rising levels of atmospheric carbon dioxide.

Because it is not possible to go back in time to directly observe and measure climate, scientists must use indirect evidence to determine the drivers, or factors, that may be responsible for climate change. The indirect evidence includes data collected using ice cores, tree rings, glacier lengths, pollen remains, and ocean sediments. The data shows a correlation between the timing of temperature changes and factors of climate change.

Greenhouse gases are probably the most significant drivers of the climate. When heat energy from the sun strikes the Earth, gases known as greenhouse gases trap the heat in the atmosphere, in a similar manner as do the glass panes of a greenhouse keep heat from escaping. The greenhouse gases that affect Earth include carbon dioxide, methane, water vapor, nitrous oxide, and ozone. Approximately half of the radiation from the sun passes through these gases in the atmosphere and strikes the Earth. This radiation is converted into thermal (infrared) radiation on the Earth's surface, and then a portion of that energy is re-radiated back into the atmosphere. Greenhouse gases, however, reflect much of the thermal energy back to the Earth's surface. The more greenhouse gases there are in the atmosphere, the more thermal energy is reflected back to the Earth's surface, heating it up and the atmosphere immediately above it. Greenhouse gases absorb and emit radiation and are an important factor in the greenhouse effect: the warming of Earth due to carbon dioxide and other greenhouse gases in the atmosphere.

Preserving Biodiversity

Preserving biodiversity is an extraordinary challenge that must be met by greater understanding of biodiversity itself, changes in human behavior and beliefs, and various preservation strategies.

Within many countries there are laws that protect endangered species and regulate hunting and fishing. Government Acts such as the Endangered Species Act (ESA) list species at risk and outlines their protection. Fish and wildlife conservation services provide laws to prevent overharvesting. Legislation throughout the world has been enacted to protect species. The illegal trade in organisms and their parts is probably a market in the hundreds of millions of dollars.

Establishment of wildlife and ecosystem preserves is one of the key tools in conservation efforts. A preserve is an area of land set aside with varying degrees of protection for the organisms that exist within the boundaries of the preserve. Preserves can be effective in the short term for protecting both species and ecosystems, but they face challenges that scientists are still exploring to strengthen their viability as long-term solutions to the preservation of biodiversity and the prevention of extinction.

Habitat restoration holds considerable promise as a mechanism for restoring and maintaining biodiversity. Of course, once a species has become extinct, its restoration is impossible. However, restoration can improve the biodiversity of degraded ecosystems. Reintroducing wolves, a top predator, to Yellowstone National Park in 1995 led to dramatic changes in the ecosystem that increased biodiversity. The wolves function to suppress elk and coyote populations and provide more abundant resources to the guild of carrion eaters. Reducing elk populations has allowed revegetation of riparian areas, which has increased the diversity of species in that habitat. Decreasing the coyote population has increased the populations of species that were previously suppressed by this predator. The number of species of carrion eaters has increased because of the predatory activities of the wolves. In this habitat, the wolf is a **keystone species**, meaning a species that is instrumental in maintaining diversity in an ecosystem. Removing a keystone species from an ecological community may cause a collapse in diversity. The results from the Yellowstone experiment suggest that restoring a keystone species can have the effect of restoring biodiversity in the community. Ecologists have argued for the identification of keystone species where possible and for focusing protection efforts on those species; likewise, it also makes sense to attempt to return them to their ecosystem if they have been removed.

Zoos have sought to play a role in conservation efforts both through captive breeding programs and education. The transformation of the missions of zoos from collection and exhibition facilities to organizations that are dedicated to conservation is ongoing and gaining strength. In general, it has been recognized that, except in some specific targeted cases, captive breeding programs for endangered species are inefficient and often prone to failure when the species are reintroduced to the wild. However, captive breeding programs have yielded some success stories, such as the American condor reintroduction to the Grand Canyon and the reestablishment of the Whooping Crane along the Midwest flyway.

Unfortunately, zoo facilities are far too limited to contemplate captive breeding programs for the numbers of species that are now at risk. Education is another potential positive impact of zoos on conservation efforts, particularly given the global trend to urbanization and the consequent reduction in contacts between people and wildlife. A number of studies have been performed to look at the effectiveness of zoos on people's attitudes and actions regarding conservation; at present, the results tend to be mixed.